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Abstract

We leverage Large Language Models (LLM) for zero-001
shot Semantic Audio Visual Navigation (SAVN). Existing002
methods utilize extensive training demonstrations for rein-003
forcement learning, yet achieve relatively low success rates004
and lack generalizability. The intermittent nature of au-005
ditory signals further poses additional obstacles to infer-006
ring the goal information. To address this challenge, we007
present the Reflective and Imaginative Language Agent008
(RILA). By employing multi-modal models to process sen-009
sory data, we instruct an LLM-based planner to actively ex-010
plore the environment. During the exploration, our agent011
adaptively evaluates and dismisses inaccurate perceptual012
descriptions. Additionally, we introduce an auxiliary LLM-013
based assistant to enhance global environmental compre-014
hension by mapping room layouts and providing strategic015
insights. Through comprehensive experiments and analy-016
sis, we show that our method outperforms relevant base-017
lines without training demonstrations from the environment018
and complementary semantic information1.019

1. Introduction020

Intelligent agents are anticipated to navigate intricate envi-021
ronments, leveraging both auditory and visual stimuli [29,022
36]. Considering a scenario that a vase falls and breaks,023
a robot must swiftly pinpoint a target within a room, re-024
lying primarily on transient auditory cues. This need un-025
derpins our focus on the Semantic Audio-Visual Naviga-026
tion (SAVN) task [9]. In SAVN, the target object within the027
scene emits intermittent sounds, which the agent must use,028
in conjunction with visual information, to find the object.029
In addition to the ambiguous goal information conveyed030
through sporadic sounds, intricate room layouts and com-031
plex navigation trajectories also present significant chal-032
lenges [42], rendering the SAVN task notably difficult. Pre-033
vious research [9] concentrated on the end-to-end train-034

1https://rila-savn.github.io/RILA
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Figure 1. An illustration of our agent’s strategy for semantic audio-
visual navigation. The Reflective Planner initiates navigation by
relying on perceptual information for exploration. When explo-
ration leads to an incorrect region, it subsequently discounts the
perceptual descriptions, redirecting its focus. Throughout this pro-
cess, the Imaginative Assistant persistently contributes spatial in-
sights and suggestions, thereby assisting in reasoning.

ing of reinforcement learning models, yielding inadequate 035
performance despite the use of extensive training trajec- 036
tories. Recent approaches enhance performance by inte- 037
grating auxiliary modules [42] or employing oracle instruc- 038
tions [29, 36], which may not be feasible in real-world ap- 039
plications. 040

Large language models (LLMs) [33, 34] have shown re- 041
markable progress [28, 45]. Beyond the promising perfor- 042
mance on natural language tasks [35, 38], the integration 043
of LLMs into embodied robotics applications has also re- 044
sulted in substantial improvements [2, 13, 14, 46, 48]. Re- 045
cent methods [53, 54] equip LLMs with multi-modal mod- 046
els [26, 27] that provide perception and feedback from the 047
environment, either explicitly [47, 49] or implicitly [18, 22], 048
in vision-and-language navigation tasks [4]. However, these 049
applications also fail on SAVN due to their reliance on pre- 050
cise perception information and explicit goal descriptions. 051
Consequently, realizing zero-shot SAVN, as anticipated for 052
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intelligent agents, remains a formidable challenge.053

Therefore, we propose our Reflective and Imaginative054
Language Agent (RILA), leveraging the inherent common-055
sense reasoning capabilities of LLMs to perform zero-shot056
SAVN. Practically, we design distinct perception models057
that process audio and visual signals, which further guide058
a frozen LLM in strategic planning. Through active ex-059
ploration of the environment, our agent adaptively identi-060
fies and deprioritizes misleading goal descriptions. Fur-061
thermore, we introduce an LLM-based imaginative assis-062
tant, which extracts room layouts and provides high-level063
guidance. Incorporating this assistant enables our agent064
to achieve comprehensive environmental understanding and065
navigate toward the target object in a zero-shot manner.066
Fig. 1 provides an illustration of our agent’s navigation.067

To validate our approach, we conduct experiments068
within the SoundSpaces framework. Experimental results069
show that our method surpasses relevant baselines without070
reliance on training demonstrations or complementary mod-071
ules. Notably, our agent exhibits a success rate exceeding072
60% when paired with oracle perceptions, highlighting the073
strong planning capability of LLMs. Additionally, we con-074
duct a thorough analysis of the bottleneck of the current task075
configuration. We summarize our contributions as follows:076

• We propose RILA for zero-shot SAVN, exploiting the077
commonsense reasoning capabilities of LLMs to navigate078
effectively without precise goal descriptions.079

• We introduce an imaginative assistant, designed to deduce080
the environment’s room layout and provide comprehen-081
sive suggestions, thereby enhancing the navigation.082

• Experiments substantiate that RILA surpasses previous083
baselines, which require training, in a zero-shot manner.084
We also conduct a thorough analysis of the SAVN task.085

2. Related Work086

2.1. Semantic Audio Visual Navigation087

Semantic audio-visual navigation is defined in Habitat [31,088
39] with the SoundSpaces dataset [8, 11]. Previous re-089
search [7, 50] extract features from RGB-D images and090
two-channel spectrograms using pre-trained encoders sep-091
arately [3, 8], and then train an end-to-end policy network092
by reinforcement learning to predict the next action. How-093
ever, these methods lack generalizability, failing in unsu-094
pervised scenes [42] despite necessitating extensive training095
demonstrations. Recent methods [29, 36] query for human096
instructions during the navigation. K-SAVEN [42] further097
constructs a knowledge graph to provide spatial comprehen-098
sion. Instead of training on massive demonstrations, our099
method exploits the commonsense reasoning capabilities of100
LLMs to perform solve the task in a zero-shot manner.101

2.2. Navigation with Large Language Models 102

LLMs have recently demonstrated impressive reasoning 103
abilities across a range of tasks [19, 37], including embod- 104
ied tasks [15]. Recent studies [41, 52] investigate visual- 105
language navigation with LLMs. For instance, ESC [54] 106
employs LLMs to deduce relationships between objects, 107
thereby aiding navigation. [12, 40], on the other hand, uti- 108
lize visual foundation models to convert perceptions into 109
natural language instructions. However, the application of 110
LLMs in SAVN remains underexplored, especially since 111
prior methods often rely on ground-truth goal descriptions. 112
In contrast, RILA reflectively navigates toward the target, 113
handling potentially misleading goal descriptions. 114

2.3. Layout Complementary 115

Spatial understanding, particularly regarding room lay- 116
out, is crucial for comprehending complex environments. 117
LGD[25] employs a room-type codebook to conceptual- 118
ize room layouts from image clips. Text2Room [21], con- 119
versely, creates entire rooms guided by textual instructions. 120
Recent LayoutGPT [16] taps into the visual planning ca- 121
pabilities of LLMs to produce plausible layouts for visual 122
generation. In our work, RILA utilizes LLMs to progres- 123
sively deduce the room layout and type, thereby achieving 124
a global understanding of the environment. 125

3. Method 126

In this work, we consider solving the Semantic Audio Vi- 127
sual Navigation (SAVN) task [9] in a zero-shot manner, 128
challenging agents to locate the sounding object within an 129
intricate and unseen environment. Notably, the audio sig- 130
nals here are sporadic and often absent, posing a signifi- 131
cant challenge to the agent’s decision-making process. In- 132
stead of training on trajectories from the simulated environ- 133
ment or incorporating additional semantic information, we 134
leverage the intrinsic commonsense reasoning capabilities 135
of LLMs for navigation planning. 136

3.1. Overview 137

In this section, we provide an overview of our RILA frame- 138
work, illustrated in Fig. 2. RILA consists of three parts: 139
the perception module, the Imaginative Assistant, and the 140
Reflective Planner, which we will introduce separately. 141

The perception module transforms the sensory data into 142
natural language descriptions. Visual perceptions ovt are di- 143
rectly processed via a pre-trained visual-language model, 144
which discerns and catalogs the observed objects, thereby 145
facilitating the construction of a semantic top-down map. 146
We develop distinct modules for auditory perceptions oat to 147
pinpoint the goal location and identify pertinent semantic 148
cues, given the intermittent nature. Both perceptions are 149
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[Thoughts]: You are probably in the living 
room. There are several surrounding rooms, 
including a lobby, a hallway, etc. 
[Suggestion]: The sink seems in the kitchen.

[Goal Localization]: 
The audio sounds from the 
rear right.

[Observations]: 
You have observed several objects:
1. A Sofa at <524,874>
2....
[Goal Prediction]: 
The audio sounds from a Sink.

[Thoughts]: The perceptual 
information might be misleading.
[Planning]: Navigate to <640,740>
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Figure 2. The architecture of our agent comprises three primary components. Firstly, the perception module transforms sensory inputs
into text-based descriptions. Secondly, the Imaginative Assistant analyzes regional information and offers strategic guidance from a global
perspective. Lastly, by integrating the two components, our Reflective Planner assesses perceptual data and navigates toward the target.

then synthesized into a text-based format for planning. A150
detailed description is illustrated in Section 3.2.151

Extending beyond individual objects, we integrate an152
LLM-based Imaginative Assistant (ImaAsssistant) to de-153
duce room layouts, thereby enriching the spatial compre-154
hension of intricate environments. ImaAsssistant then uti-155
lizes the layout of both explored and partially observed ar-156
eas to provide strategic planning guidance, aiding in navi-157
gation. A thorough explanation is provided in Section 3.3.158
By amalgamating insights from the perception module and159
ImaAsssistant, our Reflective Planner (RefPlanner) lever-160
ages inherent commonsense reasoning abilities to explore161
the environment and identify misleading auditory descrip-162
tions, circumventing the need for exact sound localization.163
Detailed explanations are shown in Section 3.4.164

3.2. Audio Visual Perception165

Following [42], we use the same pre-trained audio classifi-166
cation model Ma

obj to infer the target object. Considering the167
transient nature of audio signals, which presents a consid-168
erable obstacle in precise identification, we employ a pro-169
gressive strategy. Upon an audio signal oat at time step t,170
we make a prediction Ma

obj({oa1,...,t}) by amalgamating the171
current audio with the accumulative history, facilitating a172
refined accuracy. The object ĝt with the highest cumulative173
prediction score at time t is thus designated as the current174

goal object: 175

ĝt = argmax
g

(
t∑

i=1

1Ma
obj({oa1,...,i})=g

)
, (1) 176

where 1 denotes the indicator function. Guided by the pre- 177
diction ĝt, we aim to further localize it, thereby improving 178
the distinction of the target from analogous entities in the 179
environment. Nonetheless, the complex reverberation of the 180
simulation poses a significant challenge for localization, as 181
evidenced by an error margin of about 8 meters [9]. 182

Therefore, we partition the localization into indepen- 183
dent estimations of distance and direction. To quantify 184
sound distance, we collected 10,000 unheard auditory sam- 185
ples from the training environment to delineate the simu- 186
lation’s dimensional attributes. A pre-trained ResNet-18 187
model fine-tuned on this dataset demonstrates commend- 188
able accuracy in estimating distances. Predicting direction, 189
however, is substantially more arduous. 190

Instead of ascertaining the precise angle, we shift to 191
identify the binary directionality, greatly simplified by the 192
dual-sensor configuration. Nonetheless, techniques such 193
as Interaural Time Difference (ITD) [6, 20] and fine-tuned 194
models fall short of the task, which is further discussed in 195
Section 5. Consequently, we employ weighted predictions 196
based on the Root Mean Square (RMS) intensity of audi- 197
tory signals from the dual channels, denoted by Rt

l and Rt
r. 198

Practically, we consider the audio source to be from the side 199
with the larger RMS intensity. For each point p and time t, 200

3



CVPR
#987

CVPR
#987

CVPR 2024 Submission #987. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

the confidence Ct
p is calculated as:201

Ct
p =

t∑
i=1

wa
i · 1RMS(p, o

a
i ), (2)202

where 1RMS(p, o) is an indicator function which is equal203
to 1 if p is located, with respect to the agent, in the side cor-204
responding to the larger RMS intensity given observation205

o, and the weight wa
t is calculated as wa

t =
|Rt

l−Rt
r|

max (Rt
l ,R

t
r)

.206

Through iteratively accumulating the weighted predictions,207
we construct an audio map that facilitates an approximate208
localization of the goal.209

To transform visual signals into linguistic representa-210
tions, we employ the pre-trained GroundingDINO for both211
delineating bounding boxes and identifying the objects212
within the RGB observation, thereby furnishing a rudimen-213
tary environmental understanding. Besides, we separately214
prompt to detect the predicted goal object in case the tar-215
get is missed. Simultaneously, a semantic top-down map is216
constructed from the Depth observations, with the map seg-217
mented into distinct regions demarcated by detected walls,218
enabling the assistant to provide a region-level comprehen-219
sion. A more detailed illustration of our perception modules220
is further provided in Appendix.221

3.3. Imaginative Assistant222

Given the restricted information from the perception mod-223
ule, the planning relies mainly on discrete objects. How-224
ever, a global environmental understanding substantially225
benefits planning, especially for distant goals requiring226
multi-room navigation. To address this, we integrate an227
auxiliary LLM-based Imaginative Assistant (ImaAsssis-228
tant), offering strategic suggestions to bolster navigation.229

In practice, ImaAsssistant infers room layouts. By par-230
titioning the semantic map into regions using the detected231
walls, we instruct ImaAsssistant to determine closed room232
types from observed objects. Yet, as a comprehensive ex-233
ploration of a room rarely occurs, partially observed rooms234
are more frequently encountered. Therefore, we utilize the235
spatial imagination capabilities of LLMs to conceptualize236
the layout of these rooms, subsequently directing it to de-237
duce room types by interior objects and adjacent rooms. We238
present below simplified versions of the prompts.239

/* Task Description */
Please infer the room type and precise layout of the
provided interested region.
/* Room Layouts */
Observed Rooms: living room, etc.
Partially Observed Room: wall1, wall2, etc.
Internal Objects: chair1, chair2, table, etc.

240

Through iterative deduction of both observed and par- 241
tially observed rooms, RILA attains a comprehensive un- 242
derstanding of the environment, which yields additional in- 243
sights beyond the scope of individual objects. To augment 244
the planning, ImaAsssistant is further instructed to provide 245
strategic navigation advice. Rather than specific waypoints, 246
ImaAsssistant reasons about the potential goal locations, 247
considering spatial layouts and semantic attributes. These 248
insights enable ImaAsssistant to make suggestions that as- 249
sist in selecting waypoints more effectively. A simplified 250
version of the prompt template is presented below. 251

/* Task Description */
Given the room layout, infer where the Counter is.
Give your advice about which room to explore.
/* Information */
Current room: living room
Surrounding rooms: kitchen, hallway, etc.

252

3.4. Reflective Planner 253

By incorporating layouts and suggestions from ImaAsssis- 254
tant, our LLM-based Reflective Planner (RefPlanner) har- 255
nesses the inherent commonsense reasoning capabilities in 256
planning based on perceptions. At each time step t, au- 257
dio and visual perceptions are formatted as Goal Descrip- 258
tion and Observation, respectively. Additionally, a Task De- 259
scription is articulated at the outset. A simplified template 260
for the perception prompt is as follows: 261

/* Task Description */
You are performing a navigation task.
/* Goal Description */
Navigate to the object that sounds like a Counter.
/* Observations */
You have observed the following objects.

262

With a natural language synopsis of the environment and 263
the designated navigational objective, we commission Ref- 264
Planner to strategize high-level planning. Rather than spec- 265
ifying actions outright, we implement a heuristic method, 266
frontier-based exploration (FBE), which discerns the junc- 267
tures between explored and uncharted territories as poten- 268
tial waypoints for environmental reconnaissance. Instead of 269
determining specific action, RefPlanner is directed to rea- 270
son and select an exploration frontier based on current per- 271
ceptions in a zero-shot manner. The navigation history of 272
perceptions and reasonings is also provided. Practically, we 273
implement a deterministic policy for decomposing the way- 274
point into action sequences. Utilizing a connected graph de- 275
rived from the semantic top-down map, we apply Dijkstra’s 276
algorithm to determine the shortest path to the waypoint. 277

Moreover, as outlined in Section 3.2, the perception de- 278
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scriptions, particularly the goal location, are often ambigu-279
ous and may lead to misconceptions, while an intelligent280
agent is anticipated to actively interact with the environment281
to make judgments about uncertain perceptions. Therefore,282
along with the localization confidence of the frontier from283
the perception module, we hint to RefPlanner about the po-284
tential inaccuracy, which empowers it to explore the en-285
vironment adaptively and reflect the reliability of percep-286
tion, thus enhancing its proficiency in locating the target287
object. The layouts and suggestions from ImaAsssistant are288
included as well. We present below a simplified version of289
the template used for the navigation prompt.290

/* Agent Position */
You are at ⟨x, y⟩
/* Hint */
The perceptual confidence is not always accurate.
/* Frontier Candidates */
Frontier 1: ⟨x, y⟩ in the living room
Perceptual confidence: c
Surrounding objects: chair1, chair2, table, etc.
/* Suggestions */
The goal object may be in the kitchen.

291

As shown in Fig. 1, RefPlanner adaptively selects appro-292
priate waypoints from a global perspective. When RefPlan-293
ner fails to find the target after exploring an area based on294
perceptions, it identifies perceptual inaccuracies and navi-295
gates using object characteristics. The full prompt scheme296
and a detailed example of the navigation are provided in297
Appendix. In practice, we implement all LLMs using the298
March 2023 version of gpt-3.5-turbo, leveraging the299
OpenAI LLM API service2 with a temperature of 0.0.300

4. Experiments301

4.1. Experimental Setup302

4.1.1 Datasets303

We use SoundSpaces [8, 11] from Habitat [31, 39] envi-304
ronment to simulate navigation in 3D environments. We305
adopt the Matterport3D (MP3D) dataset for its ground-truth306
region layout labels and object labels. In particular, we307
evaluate our RILA on 1,000 test episodes within 10 unseen308
scenes with unheard sounds from 21 goal objects.309

4.1.2 Baselines310

We compare our model with several baselines:311

• AudioGoal [8] uses a GRU state encoder to acquire the312
following action with an end-to-end RL policy network.313

2https://platform.openai.com/docs/models

• AV-WAN [10] designs a waypoint predictor and leverages 314
a local path planner to navigate to the waypoint. 315

• SAVi [9] incorporates a goal descriptor network to predict 316
both the classification and location of the sounding object. 317

• AVLEN [36] adopts a hierarchical RL policy with goal 318
predictor and memory unit, and queries oracle instruc- 319
tions from humans if necessary. 320

• K-SAVEN [42] proposes an end-to-end policy network 321
with a knowledge graph constructed on the training data, 322
presenting the relationship between regions and objects. 323

In addition, we incorporate two zero-shot methods based 324
on foundation models to facilitate a more comprehensive 325
comparison. The ground truth goal object is provided here. 326
• ImageBind-LLM [18] is a novel multi-modality 327

model that aggregates ImageBind [17] and LLaMA- 328
Adapter [51] and we use the perfect stop strategy. 329

• ESC [54] leverages LLMs and Probabilistic Soft Logic 330
(PSL) [5] to choose a frontier for a visual-language navi- 331
gation task. We provide our audio goal description. 332

4.1.3 Metrics 333

Following previous work [7, 36, 42], we report agent per- 334
formance with the following metrics: Success Rate (SR), 335
Success Rate weighted by Path Length (SPL), Success Rate 336
weighted by Number of Actions (SNA), and Success When 337
Silent (SWS), all in percentage (%). We also report the av- 338
erage Distance To Goal (DTG) in meters at episode end. 339

4.1.4 Implementation Details 340

Consistent with previous studies, the agent is provided with 341
RGB and depth images at a resolution of 256 × 256. It 342
also receives two-channel audio clips in the form of 65 × 343
26 spectrograms. The action space includes MoveForward, 344
TurnRight, TurnLeft, and Stop, with a movement step set at 345
1 meter. Additionally, the agent obtains its GPS location 346
at each time step. Detailed implementation details are pro- 347
vided in Appendix. 348

4.2. Experimental Results 349

The comparative results are presented in Table 1. We derive 350
the results of major baselines from their respective papers. 351
For ESC and ImageBind-LLM, we incorporate ground-truth 352
audio descriptions for the SAVN task. Implementation de- 353
tails are provided in the Supplementary Material. Accord- 354
ing to Table 1, our agent surpasses baselines that utilize 355
end-to-end reinforcement learning training, such as SAVi, 356
in a zero-shot manner. Even when juxtaposed with base- 357
lines that utilize additional information, RILA achieves a 358
higher success rate. Besides, we notice that Imagebind- 359
LLM fails on the SAVN task, despite incorporating ground- 360
truth audio descriptions, reflecting the limited performance 361
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Method SR (%) ↑ SPL (%) ↑ SNA (%) ↑ DTG (m) ↓ SWS (%) ↑

Supervised

AudioGoal [8] 16.5 15.5 10.4 12.8 5.6
AV-WAN [10] 17.2 13.2 12.7 11.0 6.9
SAVi [9] 24.8 17.2 13.2 9.9 14.7
AVLEN [36] 26.2 17.6 14.2 9.2 15.8
K-SAVEN [42] 34.4 23.4 21.7 6.6 14.3

Unsupervised

Imagebind-LLM† [18] + Audio∗ 2.4 1.5 1.1 22.6 1.4
ESC [54] + Audio∗ 23.6 8.0 4.8 17.7 14.2

Ours w/o Assistant 31.4 9.6 6.8 12.2 15.3
Ours 35.4 11.8 8.7 11.4 20.4

Table 1. Comparison with relevant baselines on SoundSpaces Matterport3D test dataset. AVLEN incorporates extra oracle instructions. †
denotes the perfect stop strategy and Audio∗ indicates that the ground-truth audio description is provided. In contrast, our method requires
no training trajectories or additional semantic information.

Method SR (%) ↑ SPL (%) ↑ SWS (%) ↑

Random† 19.8 11.8 16.2
Nearest† 9.8 22.6 6.4
Llama-2 7B 39.4 22.2 35.4

Ours 60.8 39.6 56.6

Table 2. Ablation study on RefPlanner by replacing it with heuris-
tic frontier selection methods and replacing the ChatGPT with
Llama-2. † indicates using oracle stop.

of open-source multi-modality foundation models on com-362
plex embodied tasks. Notably, our approach significantly363
outperforms previous works in terms of SWS, with over364
40% improvement over K-SAVEN. This underscores the365
exceptional efficacy of our method in scenarios involving366
long distances and intermittent sounds, thereby highlight-367
ing the potential of harnessing the commonsense reasoning368
abilities of LLMs for navigation in physical environments.369

We observe a relatively lower SPL of our method, at-370
tributed to the fact that RILA requires holistic exploration of371
the environment to ascertain the target object due to the ab-372
sence of end-to-end training. Additionally, given the vague373
nature of the goal descriptions, RILA adopts a more cau-374
tious strategy for navigation, often traversing longer dis-375
tances before reaching the objective. For better illustration,376
we provide two cases of snapshots of the navigation pro-377
cess using RILA in Fig. 3. As demonstrated in the left case378
study, RILA initially explores the living room, guided by er-379
roneous perceptual cues. Upon realizing the absence of the380
goal object, RILA shifts its navigation toward the bathroom,381
utilizing object characteristics to locate the toilet. This pro-382
cess highlights RILA’s ability to effectively reflect on poten-383
tially misleading goal descriptions, a factor that inevitably384
results in a lower SPL. We posit that enhancing audio lo-385

calization, perhaps through the well-established Neural Ra- 386
diance Fields (NeRF) [32], could further improve the SPL. 387
Moreover, as depicted in the right case of Fig. 3, when the 388
RefPlanner encounters unexplored areas, the ImaAssistant 389
supplies conjectural room layouts. The spatial insight di- 390
rects the RefPlanner to explore the kitchen instead of the 391
dining room in search of the sink, underscoring the ImaAs- 392
sistant’s utility. Overall, RILA demonstrates the capacity to 393
adaptively navigate complex environments. 394

4.3. Ablation Study 395

Ablation on ImaAssistant. As shown in Table 1, the in- 396
tegration of ImaAssistant markedly improves performance, 397
underscoring the impact of strategic guidance. We also ob- 398
served considerable advancements in SWS, demonstrating 399
the crucial role of comprehensive layout understanding for 400
long-distance navigation in intricate settings. 401

Ablation on RefPlanner. We replace our frontier selec- 402
tion RefPlanner with two heuristic frontier-based explo- 403
ration methods, namely Random which selects a frontier 404
randomly, and Nearest which selects the nearest frontier. 405
We also compare the ability of GPT-3.5 and Llama-2 for 406
frontier selection by replacing GPT-3.5 in RefPlanner with 407
Llama-2. To eliminate the effect from perception, we use 408
ground-truth perceptions (i.e., acoustic object, audio map) 409
in these experiments. In the two heuristic approaches, we 410
automatically execute the Stop action when the distance to 411
the goal is less than 1m. As illustrated in Table 2, despite 412
access to ground-truth perceptions, these heuristic methods 413
exhibit poor performance. Notably, Llama-2 7B [43] also 414
struggles to locate the goal object, indicating the lack of 415
spatial reasoning ability of Llama-2 for navigation tasks. 416
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Figure 3. Visualization of two navigation trajectories, including region layouts and egocentric observations. The left case demonstrates how
RefPlanner reflects on a misleading perception, whereas the right case illustrates that ImaAssistant makes imagination and suggestions,
guiding RefPlanner in waypoint selection based on semantic relevance.

Perception Accuracy (↑)

Object Recognition 83.9%
Audio Classification 93.0%
Audio Distance 83.8%
Audio Direction 73.7%

Table 3. Accuracy results of different perception modules. Object
recognition accuracy represents the probability that the detected
item is correctly classified. Audio distance prediction is deemed
accurate within a 4-meter error range.

Ablation on Perception Module. Furthermore, we con-417
ducted a comprehensive evaluation of the perception mod-418
ules across 500 episodes from 10 scenes. Results are shown419
in Table 3. GroundingDINO achieves an 85.0% recall rate420
on object recognition, indicating only a 15.0% error rate in421
goal object identification. For all recognized objects, the422
accuracy also reaches a notable 83.9%. Similarly, the audio423
classifier distinguishes among 21 classes with an accuracy424
rate of up to 93.0%. By progressively refining the predic-425
tion, RILA made correct predictions in almost all episodes.426
The accuracy of audio distance prediction is also commend-427
able, reaching 83.8% within a 4-meter margin of error, and428
has an average distance error of 2.8 meters. Conversely, the429
accuracy of binary judgments on audio direction is limited430
to 73.7%, indicating a significant likelihood of error accu-431
mulation over steps. To investigate whether the direction432

judgment is impacted by complex reverberations in intri- 433
cate environments, we further separately evaluate episodes 434
based on whether the goal distance is less or more than 435
15 meters. Notably, accuracy reached 85.6% for shorter 436
distances, in stark contrast to only 59.5% for longer dis- 437
tances. These findings underscore the difficulty of making 438
binary direction determinations in SAVN, particularly over 439
extended distances. 440

In conclusion, each component of RILA demonstrates 441
competitive performance, with the exception of direction 442
classification, which tends to be less reliable. To delve 443
deeper into the capabilities of RILA, we present a compre- 444
hensive analysis in Section 5. 445

5. Analysis and Discussion 446

In this section, we focus on the following research ques- 447
tions: (i) Are LLMs adequate for completing complex nav- 448
igation tasks? (ii) Does the sensory data provided by the 449
SoundSpaces simulation offer clarity and sufficiency for ef- 450
fective navigation? (iii) Are there any inappropriate sce- 451
nario settings within the current task configuration? 452

LLMs excel in intricate language-based navigation with 453
inherent commonsense reasoning capabilities. By inte- 454
grating ground-truth perceptual information, we investigate 455
the navigational planning capabilities of LLMs. Rather than 456
specifying precise goal locations, we provide only a rough 457
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Method SR ↑ SPL ↑ DTG ↓
Ours 30.2 9.0 11.8
+ GT Audio Semantic 30.2 11.2 11.6
+ GT Audio Localization 52.4 24.6 6.4
+ GT Visual Perception 62.0 39.2 4.8

Table 4. Comparison of incorporating different ground-truth per-
ceptions on the validation dataset. Experiments in each row in-
clude the ground-truth information from all previous rows.

Relative Angle (rad)
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D

 (d
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Relative Angle (rad)

(a) (b)

Figure 4. ILT and ITD of the sampled data points. We present the
linear regression and the corresponding confidence intervals.

area. According to the results in Table 4, our agent achieves458
a success rate exceeding 60% with a DTG under 5 on the459
validation dataset. Failures typically arise from encounter-460
ing similar objects in the target area or due to the inherent461
limitations of FBE in long-distance navigation. These find-462
ings further confirm the adequacy of LLMs’ planning abili-463
ties for navigational tasks.464

Besides, we observe that providing only ground-truth au-465
ditory data yields commendable performance. Conversely,466
the success rate markedly decreases in the absence of pre-467
cise audio location information, consistent with the experi-468
mental results of the perception modules. Although RILA469
can effectively utilize potentially imprecise perceptual de-470
scription, it remains vulnerable to misdirection caused by471
similar objects, thereby constraining the overall perfor-472
mance. These observations suggest that the current bottle-473
neck in the SAVN task lies in sound source localization.474

The auditory sensory data is inadequate for precise lo-475
calization. To further investigate the audio localization,476
we sampled 4,000 dual-channel audio data points from the477
environment and computed two metrics: Interaural Level478
Difference (ILD) [44] and ITD. These metrics, crucial for479
sound source identification in dual-channel audio [1, 30],480
measure differences in sound intensity and arrival time, re-481
spectively. The results are depicted in Fig. 3, where the x-482
axis represents the sound source angle relative to the agent.483
Ideally, these metrics should display a pronounced negative484
correlation with the angle [23]. Our analysis reveals that485
while ILD demonstrates some negative correlation, serv-486

Agent pathGoal object Agent Shortest path Wrong region

Figure 5. An example of an episode where the goal object is in-
distinguishable. In this case, the target is far from the agent and
surrounded by similar, incorrect items.

ing as the basis for our direction classification, ITD does 487
not effectively indicate the sound’s relative direction. This 488
underlines the constraints of the current audio input con- 489
figuration [24], complicating precise localization based on 490
auditory inputs. Detailed analysis is provided in Appendix. 491

Some cases could be further improved. Even in the ab- 492
sence of precise localization, semantic cues are expected to 493
guide the agent to the target. However, our observations re- 494
veal situations where both audio localization is imprecise 495
and semantic information fails to sufficiently differentiate 496
between objects. For instance, as illustrated in Figure 5, 497
the sounding object is distant from the agent, surrounded 498
by numerous similar items, such as eight chairs in this case. 499
In SAVN, where sounds are intermittent, the agent must se- 500
mantically discern the correct stopping point. In this ex- 501
ample, only two positions would lead to success. Lacking 502
adequate reasoning cues, the agent resorts to random selec- 503
tion, leading to failure without exact goal location details. 504
We postulate that these episodes could be improved by in- 505
troducing distinct visual differences in target objects, such 506
as overturning chairs, thus providing definitive cues for the 507
agent to accurately identify the target. 508

6. Conclusion 509

In this work, we propose RLIA, a reflective and imaginative 510
agent for zero-shot semantic audio-visual navigation. By 511
utilizing distinct models for sensory data processing, RILA 512
guides an LLM-based reflective planner in active environ- 513
mental exploration. Throughout this exploration process, 514
RILA reflectively assesses and disregards erroneous sen- 515
sory perceptions, especially the goal descriptions. Besides, 516
we integrate an LLM-based auxiliary imaginative assistant, 517
designed to generate room layouts and offer strategic guid- 518
ance, thereby improving global understanding of the envi- 519
ronment. Comprehensive experimental results demonstrate 520
the efficacy of RILA. 521
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